Digital Logic Lecture 02

By Amr Al-Awamry

Radix Complements

Radix complements can be performed by this operation:

$$
\left[\left(r^{n}-1\right)-N\right]+1
$$

The 10 's complement of 012398 is 987602 .
The 10 's complement of 246700 is 753300 .

Complements II

Binary 2's complement will be the same with $r=2$
The 2 's complement of 1101100 is 0010100 .
The 2 's complement of 0110111 is 1001001 .

Subtract using complements

Subtract (M-N) can be performed in three steps: 1- Add M to r's complement of N 2- if $M>N$ then $M-N$ is obtained from step 1 just be discarding carry 3- if $\mathrm{M}<\mathrm{N}$ take r's complement of step 1 and add negative sign bit

Subtraction II

Using 10's complement, subtract $72532-3250$.

M	$=$	72532
lo's complement of N	$=$	$+\underline{96750}$
Sum	$=$	169282
Discard end carry 10^{5}	$=$	-100000
Answer $=$	69282	

Using 10's complement, subtract 3250-72532.

M	$=$
10's complement of N	$=$
Sum	$=$
$\frac{27468}{30718}$	

There is no end carry.
Answer: - (10 's complement of 30718) $=-69282$

Subtraction III

Given the two binary numbers $X=1010100$ and $Y=1000011$, perform the subtraction (a) $X-Y$ and (b) $Y-X$ using 2 's complements.
(a)

X	$=$		1010100
2's complement of Y	$=$		$+\frac{0111101}{10010001}$
Sum	$=$	1	

(b)

Y	$=$	1000011
2's complement of X	$=$	$+\frac{0101100}{1101111}$

There is no end carry.
Answer: $Y-X=-(2$'s complement of 1101111) $=-0010001$

Signed Binary Numbers

It is customary to represent the sign with a bit placed in the leftmost position of the number. The convention is to make the sign
bit 0 for positive and I for negative.

Binary Codes

TABLE 1-2
Binary codes for the decimal digits

Decimal digit	$(B C D)$	Excess-3	$84-2-1$	2421	(Biquinary) 50431
0	0000	0011	0000	0000	0100001
1	0001	0100	0111	0001	0100010
2	0010	0101	0110	0010	0100100
3	0011	0110	0101	0011	0101000
4	0100	0111	0100	0100	0110000
5	0101	1000	1011	1011	1000001
6	0110	1001	1010	1100	1000010
7	0111	1010	1001	1101	1000100
8	1000	1011	1000	1110	1001000
9				1111	1111

Gray Code

TABLE 1-4
Four-bit Gray code

Gray code	Decimal equivalent
0000	0
0001	1
0011	2
0010	3
0110	4
0111	5
0101	6
0100	7
1100	8
1101	9
1111	10
1110	11
1010	12
1011	13
1001	14
1000	15

Binary Storage and Registers

- A register is a group of n Bits
- Usually we have 8 bits or 16 bits registers

Binary Info processing

Binary Logic

Table 1.8
Trath Table eillogicul operations

HND			OR			HOTT	
\pm	y	$\pm 7 \mathrm{y}$	5	y	$5+y$	\pm	\pm
\square	\square	0	0	\square	[0	1
-	1	0	0	1	1	1	0
1	\square	0		\square	1		
1	1	1	1	1	1		

Logic Gates

FIGURE 1.3
Signal lewis for blnary loglc waluas

FIGURE 1.4
Symbols for digltal logk droults

Logic gates II

FIGURE 1.5

Input-output signals for gater

(1) Threnpatinis

FIGURE 1.6
Gater with multipliil inputs

