Digital Logic Lecture 02

By Amr Al-Awamry

Radix Complements

Radix complements can be performed by this operation:

 $[(r^{n} - 1) - N] + 1$

The 10's complement of 012398 is 987602. The 10's complement of 246700 is 753300.

Complements II

Binary 2's complement will be the same with r=2 The 2's complement of 1101100 is 0010100. The 2's complement of 0110111 is 1001001.

Subtract using complements

Subtract (M-N) can be performed in three steps: 1- Add M to r's complement of N

2- if M>N then M-N is obtained from step 1 just be discarding carry

3- if M<N take r's complement of step 1 and add negative sign bit

Subtraction II

Using 10's complement, subtract 72532 - 3250.

$$M = 72532$$

- 10's complement of N = + 96750
 - Sum = 169282
- Discard end carry $10^5 = -100000$

Answer = 69282

Using 10's complement, subtract 3250 - 72532.

- M = 03250
- 10's complement of N = + 27468
 - Sum = 30718

There is no end carry.

Answer: -(10's complement of 30718) = -69282

Subtraction III

Given the two binary numbers X = 1010100 and Y = 1000011, perform the subtraction (a) X - Y and (b) Y - X using 2's complements.

(a)	X =	1010100
	2's complement of $Y =$	+_0111101
	Sum =	10010001
	Discard end carry $2^7 =$	-10000000
	Answer: $X - Y =$	0010001
(b)	Y =	1000011
	2's complement of $X =$	+ 0101100
	Sum =	1101111
	There is no end carry.	

Answer: Y - X = -(2's complement of 1101111) = -0010001

Signed Binary Numbers

It is customary to represent the sign with a bit placed in the leftmost position of the number. The convention is to make the sign

bit 0 for positive and I for negative.

Binary Codes

TABLE 1-2 Binary codes for the decimal digits

Decimal digit	(BCD) 8421	Excess-3	84-2-1	2421	(Biquinary) 5043210
0	0000	0011	0000	0000	0100001
1	0001	0100	0111	0001	0100010
2	0010	0101	0110	0010	0100100
3	0011	0110	0101	0011	0101000
4	0100	0111	0100	0100	0110000
5	0101	1000	1011	1011	1000001
6	0110	1001	1010	1100	1000010
7	0111	1010	1001	1101	1000100
8	1000	1011	1000	1110	1001000
9	1001	1100	1111	1111	1010000

Gray Code

TABLE 1-4 Four-bit Gray code

Gray code	Decimal equivalent
0000	0
0001	1
0011	2
0010	3
0110	4
0111	5
0101	6
0100	7
1100	8
1101	9
1111	10
1110	11
1010	12
1011	13
1001	14
1000	15

Binary Storage and Registers

- A register is a group of n Bits
- Usually we have 8 bits or 16 bits registers

FIGURE 1.1 Transfer of information among registers

Binary Info processing

Binary Logic

Table 1.8 Truth Tables of Logical Operations

AND		OR			NOT		
x	y	x-y	x	y	x + y	x	\mathbf{x}^{*}
0	0		0	0	0	0	1
0	1	0		1	1	1	0
1	0	0		0	1		•
1	1	1	1	1	1		

Logic Gates

Logic gates II

FIGURE 1.5

Input-output signals for gates

(b) Pour-input OR gate

(a) Three-input AND gate

FIGURE 1.6 Gates with multiple inputs